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Semiflexible polymer networks, such as cell cytoskeleton, differ significantly from their flexible counterparts
in their deformation energy storage mechanism. As a result, the network elasticity is governed by both enthal-
pic and entropic variations. In addition, the enthalpic effect shows two distinct regimes of energy storage
mechanism, the affine and nonaffine regimes. In the past, computation-based modeling on random networks,
such as the Mikado model, was used to demonstrate the physical mechanism of mechanical deformation of
semiflexible networks. These models are computationally intensive and hence are difficult to apply to studying
whole cells. In this paper, we develop a micromechanical model to predict the average macroscopic elastic
properties of a random, semiflexible, biopolymer network. The model employs a unit cell consisting of four
semiflexible chains and four equivalent axial-bending springs. The proposed unit-cell-based micromechanical
model represents a statistically average realization of the actual network and gives the average mechanical
properties, such as the shear modulus. Comparisons between the model predictions and Mikado model results
confirm that this micromechanical model captures the essential deformation physics revealed from previous
studies on the actual network and is capable of predicting the transition between nonaffine and affine defor-
mations. This model can be used to develop efficient continuum constitutive models of the cytoskeleton in the
future.
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I. INTRODUCTION

Cells are the basic functional units of life. To perform
their various life-sustaining activities, cells undergo and con-
trol a plethora of intra- and extracellular events, many of
which involve mechanical phenomena, such as mechan-
otransduction between the cell and its external environment
�1�. In most eukaryotic cells, the mechanical and dynamical
properties are governed by a network of biopolymers that
collectively form what is known as the cytoskeleton, a mod-
erately flexible and dynamic network of protein fibers of
varying lengths and mechanical properties combined with a
group of associated regulatory proteins �2� �Fig. 1�. The ma-
jor constituent biopolymers of cytoskeleton are actin fila-
ments �AFs�, intermediate filaments �IFs�, and microtubules
�MTs�. The cytoskeleton manages the arrangements of these
constituent biopolymers to bring about systematic changes in
the macroscopic mechanical properties during the cell’s me-
chanical interaction with the extracellular environment, com-
monly called the extracellular matrix �ECM�. Cell motility,
division, and adhesion are some of the well-known activities
at the macroscopic level where the mechanical properties of
the cytoskeleton play an important role. Studies on the
single-molecular level �3–6� have established that the con-
stituent biopolymers of the cytoskeleton behave like semi-
flexible polymers and contribute in a unique manner to the
macroscopic network elasticity of the cell cytoskeleton.

In a flexible polymer network such as a rubber, the per-
sistence length of a polymer chain is much smaller than the
distance between two cross-linking sites �7�. Therefore, indi-
vidual polymer chains can undergo continuous thermal fluc-
tuations, which give rise to entropic behaviors. The elasticity

is thus contributed by entropic variations and the strain en-
ergy is mainly stored entropically due to the reduction of the
number of accessible chain conformations between the cross
links �8�. In a network consisting of semiflexible polymer
chains, the persistence length lp of the individual chains is
much longer than the average distance between the two
cross-link sites, lc, and comparable to the contour length of
individual polymer chains, L. As a consequence, a cross-
linked network made of semiflexible polymer differs signifi-
cantly from a flexible polymer network in its elastic energy
storage mechanism and overall macroscopic manifestation of
elastic behavior. In a semiflexible polymer network, defor-
mation energy is contributed by both entropic as well as
enthalpic variation. In addition the latter is stored in exten-
sional, bending, or coupled modes in the network.

At the microscopic level, where the individual chains are
deformed to accommodate the macroscopic deformation,
only one length scale lc dictates the overall process in a
flexible polymer network. The identity of an individual flex-
ible chain is lost on a length scale beyond the cross-linking
distance �neglecting the dangling end effect and the excluded
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FIG. 1. Electron microscope image of semidilute solution of

cytoskeleton �32�.
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volume interaction� �9�. On the contrary, a semiflexible poly-
mer chain can retain its identity beyond a cross-link point,
because the two segments in the chain can still be correlated
over distances much longer than lc �9�. The cross-linking
density, defined as the number of cross links over a polymer
chain and calculated as L / lc−1, has a significant effect in
determining the overall elasticity of a semiflexible network
�9–11�. Another significant difference in flexible network
elasticity is that deformation is assumed to be spatially uni-
form down to the smallest microscopic length scale in the
material. The affine deformation assumption is a great sim-
plification that allows the construction of theoretical models
relating the macroscopic elastic constants of a flexible poly-
mer network to the microscopic properties of its constituent
polymers �12�. For modeling semiflexible networks, how-
ever, recent theoretical studies have revealed that application
of the affine approximation is not adequate; rather a cross-
over between the spatially uniform affine deformation and
the spatially heterogeneous nonaffine deformation takes
place depending on the length scale and the degree of cross
linking in the network �9–11,13,14�. At the macroscopic
scale, which is on the order of the sample size, all deforma-
tions self-average to maintain an affine uniformity, but this
self-averaging does not hold in all successively smaller me-
soscopic and microscopic length scales. Identifying this elu-
sive length scale is an important step toward predicting the
correct homogenized elastic properties of a semiflexible net-
work �15�. Also, it has recently been found in the literature
�9,13,16� that for a given set of elastic parameters �bending
stiffness and axial stiffness� of the individual constituents of
a semiflexible network, the transition between nonaffine and
affine deformations is characterized by a transition between
the deformation dominated by the bending mode �nonaffine�
and the one dominated by the stretching mode �affine�. At
low cross-linking density, bending is the favorable deforma-
tion mode since it requires lower energy; the deformation of
the network is therefore nonaffine. As the cross-linking den-
sity increases, the cross-linking sites become closer to each
other; as a consequence the attachments of polymer chains
impose strong resistance to the transverse deflection of a
chain and hence impede the bending deformation; at high
cross-linking density, the stretching deformation dominates
and the network deformation becomes affine �9,13�.

Recently, the growing interest in cytoskeleton mechanics
has necessitated the development of efficient models that can
capture the essential physical mechanism of cytoskeleton de-
formation as discussed above. Previous studies view a cy-
toskeleton as a single-phase, random percolation, network of
discrete filamentous elements �1,11,13,17�, such as the Mi-
kado model �Fig. 2� considered by Head et al. �9,13� and
Wilhelm and Frey �11�, where they carried out finite-element
analysis of a unit cell derived from the actual network for
different realizations �different distributions of cross links
and relative orientations� to find the dependence of the aver-
age macroscopic shear and extensional modulus of the whole
network on the varying geometrical and material parameters.
Significant physical insight can be gained from such a
model. For example, they found that for semiflexible net-
work, the nonaffine to affine transition is represented by van-
ishing bending energy contribution to the overall deforma-

tion. However, such a modeling methodology is
computationally expensive, even with the unit cell model
used in their studies. Such a modeling methodology, if not
impossible, will be even more expensive at the whole cell
level. One strategy to improve the efficiency is to develop a
continuum level constitutive model where the cytoskeleton
will be viewed as a continuum medium but has the same
strain energy as the actual cytoskeleton in response to defor-
mation. Such a development will need an analytical descrip-
tion of the strain energy associated with general deforma-
tions in the cytoskeleton, upon which the stress-strain
relationship can be readily obtained �18�. In this paper, we
propose a micromechanical model for the cross-linked actin
filamentous network through a unit cell consisting of four
semiflexible chains, where the internal balance of bending
and stretching will be manifested in its homogenized consti-
tutive results at the macroscopic scale. This micromechanical
approach has been used in the past to develop constitutive
models for different materials, including polymer networks
such as rubbers �19�. In this paper, we first consider the
enthalpic contribution to the macroscopic elasticity and the
network is assumed to be at T=0 K. Inclusion of the en-
tropic contribution is discussed after the presentation of the
model. The network is also assumed to span a sufficiently
large domain compared to the individual chain length so that
we can neglect the finite-size effects �14�.

II. MODEL DESCRIPTION

In the following, we present a model based on a unit cell
consisting of four semiflexible polymer chains. It is impor-
tant to note that the present unit cell arrangement provides a
framework that one can use to develop a representative cell
with different numbers of fibers, for example, a three-fiber
triangular unit cell. However, a triangular unit cell would
incorporate anisotropy with respect to stretch. Therefore, un-
less the network has an inherent topological pattern that is
close to a triangular network �such as a spectrin network
�20,21�� and exhibits inherent anisotropy, a four-fiber unit
will present a reasonable approximation of the real material.

FIG. 2. 2D random network of fibers, L / lc=29.09, Mikado
model �13�.
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Certainly, one may consider a unit cell with more chains,
such as an eight-fiber unit; as long as they are properly ar-
ranged, one may obtain a better approximation. However,
previous developments of models for rubber elasticity
showed that, although more fibers in the unit can improve the
model prediction, the amount of improvement is not signifi-
cant as compared to the additional complicated mathematical
work involved �19�.

A. A unit cell: Representative of cytoskeleton

In the micromechanical model, the unit cell is made of
four semiflexible polymer chains connected with each other
as shown in Fig. 3. The global coordinate axes �x ,y� are
placed at the center of the unit cell. The chains L1-9-6-5 ,
L2-10-7-6 ,L3-11-8-7 ,L4-12-5-8 represent four semiflexible chains
of length Lf each and will be termed the four main chains
from here on. The main chains connect with each other to
form an internal square �6-7-8-5� with each side length lc.
Here lc represents the average distance between two con-
secutive cross links in the network. The joints are assumed to
be flexible hinges to simulate the mechanical linkages at the
cross links in the actual network. As revealed in previous
studies, changing the cross-link connections from the hinge
to the weld type does not affect the overall model predictions
significantly �13,22�. The main chains have an angle 90°
with each other at a joint. In addition, the main chains are
also attached with four equivalent springs at nodes 9, 10, 11,
and 12 at a distance l1 from the nodes 5, 6, 7, and 8, respec-
tively �shown in Fig. 3�. The springs are used to simulate
constraints applied to these four main chains from the other
chain attachments due to axial stretching and bending in the
actual network. It is also assumed that the base nodes A, B,
C, and D of the four equivalent springs are embedded in
space and move affinely with the applied stretches. �1 and �2

are the applied principal stretches on the unit cell. The
boundary conditions are imposed as shown in Fig. 3, in order
to eliminate the rigid body motions of the system. The ma-
terial properties of the individual chains are given by two
parameters: the bending stiffness � and the axial stiffness �.
Following Head et al. �9,13�, we define a nondimensional
material parameter as

l̄b = lb/L =��

�

1

L
. �1�

Any mechanical property of the network can be expressed as
a function of two nondimensional parameters L / lc and lb /L.
For a given geometric parameter L / lc, the average number of
cross links over a semiflexible chain in the network is L / lc
−1. We define the effective length of each chain as �neglect-
ing the dangling ends at each end; see Fig. 4�

Lf = L − 2lc. �2�

In Fig. 3, the equivalent spring represents the overall con-
straints �due to bending and axial loading of chains attached
to the main chain� from other chain attachments in the actual
network and l1 is the distance between the base node of the
equivalent spring and the attachment point to the main chain
�see Fig. 5�. Based on this concept, l1 is defined to be the
average distance of �Lf / lc+1�−2 cross links attached to the
main chain between distances lc and Lf, measured from one
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FIG. 3. Unit cell idealization of a cytoskeleton.
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FIG. 5. �a� Cross-link arrangements in the actual network. �b�
Average attachment of the cross-linked elements on the main chain.
The last two attachments are attached to the main chain in the unit
cell; all other attachments are replaced by axial-bending springs. �c�
Equivalent spring �the equivalent of all the springs in �b�� and its
attachment to the main chain.
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end of the chain as shown in Fig. 5�c�. The expression of the
distance l1 is given by

l1 =
2lc + 3lc + ¯ + �Lf/lc − 1�lc

�Lf/lc − 1�
=

1

2
�Lf/lc + 2�lc. �3�

In Figs. 5�b� and 5�c�, Lf / lc−1 polymer chains are attached
to a main chain within the distance lc. The overall contribu-
tion of these chains is represented by an equivalent spring of
length lc and axial stiffness �ka� and bending stiffness �kb�.
To estimate the axial and bending spring stiffness, we calcu-
late the energy equivalence corresponding to imposed dis-
placements �1 and �2 at one end relative to the other end of
a main chain. The expressions of the spring constants are
given by

ka =
2

3

�

Lf

�Lf/lc�m�Lf/lc + 1��2Lf/lc + 1� − 1

�Lf/lc + 2�2 ,

kb =
3�

Lf
3

�Lf/lc�n+3

�Lf/lc − 1�
, �4�

where m and n are two fitting exponents, incorporated as a
correction to account for the difference between the estima-
tion from Eq. �4� and the actual network. As discussed later,
m and n are determined by comparing the unit cell model
prediction and the actual network analyses in the literature
and are determined to be m=1 and n=3. For the present unit
cell idealization, these exponents remain constants and are
independent of variations of the cross-link density and other
material parameters.

B. Strain energy of deformation

We now calculate the strain energy stored in the unit cell
due to the applied stretches. The total energy can be given as

U = Uch
a + Uch

b + Usp
a + Usp

b , �5�

where the superscripts a and b stand for axial and bending,
respectively, and the subscripts “ch” and “sp” denote chains
and springs, respectively. The bending energy in terms of the
nodal displacements ui and vi �ui is the displacement of a
node along the main chain and vi is the displacement perpen-
dicular to the main chain.� is given as

Uch
b = U1-9-6-5

b + U2-10-7-6
b + U3-11-8-7

b + U4-12-5-8
b

=
6�

Lf
3

�Lf/lc�3�Lf/lc − 1�
4�Lf/lc��l1/lc� − �1 + l1/lc�2 ��1-9-6-5

2 + �2-10-7-6
2

+ �3-11-8-7
2 + �4-12-5-8

2 � , �6�

where

�1-9-6-5 = �v5 −
�

� − �
v9� −

�

� − 1
�− u6 −

� − 1

� − �
v9� �7�

�2-10-7-6 = �v6 − v2 −
�

� − �
�v10 − v2��

−
�

� − 1
�− u7 − v2 −

� − 1

� − �
�v10 − v2��

�3-11-8-7 = �v7 − v3 −
�

� − �
�v11 − v3��

−
�

� − 1
�− u8 − v3 −

� − 1

� − �
�v11 − v3��

�4-12-5-8 = �v8 − v4 −
�

� − �
�v12 − v4��

−
�

� − 1
�− u5 − v4 −

� − 1

� − �
�v12 − v4�� ,

and �=Lf / lc , �=l1 / lc.
The axial energy Uch

a is given as

Uch
a = U1-9-6-5

a + U2-10-7-6
a + U3-11-8-7

a + U4-12-5-8
a , �8�

where

U1-9-6-5
a =

1

2

�

Lf
�� u9

2

� − �
+

�v6 − u9�2

� − 1
+ �u5 − v6�2� �9�

U2-10-7-6
a =

1

2

�

Lf
�� �u10 − u2�2

� − �
+

�v7 − u10�2

� − 1
+ �u6 − v7�2�

U3-11-8-7
a =

1

2

�

Lf
�� �u11 − u3�2

� − �
+

�v8 − u11�2

� − 1
+ �u7 − v8�2�

U4-12-5-8
a =

1

2

�

Lf
�� �u12 − u4�2

� − �
+

�v5 − u12�2

� − 1
+ �u8 − v5�2� .

The energy stored in the four equivalent springs is given as

Usp
a =

1

2
ka��v9 − vA�2 + �v10 − vB�2 + �v11 − vC�2

+ �v12 − vD�2� ,

Usp
b =

1

2
kb��u9 − uA�2 + �u10 − uB�2 + �u11 − uC�2 + �u12 − uD�2� ,

�10�

where �uA ,vA� , �uB ,vB� , �uC ,vC� , and �uD ,vD� are the
corresponding displacements at points A, B, C, and D. With
the externally applied stretches and the imposed boundary
conditions, we minimize the total potential of the system to
solve the nodal displacements. The strain energy of deforma-
tion is expressed as a quadratic function of the applied
stretches. The energy stored per unit area is then calculated
as

U���1
2,�2

2� =
U

Auc
, �11�

where U is the total energy stored inside the unit cell. The
area of the unit cell is given as �see Fig. 3�

Auc = �Lf/cos ��2, tan � = 1 −
lc

Lf
. �12�
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C. Elastic modulus calculation

The network is assumed to be statistically isotropic in
nature. For any kind of imposed deformation in two dimen-
sions �2D�, there exist two principal stretch directions �23�.
To calculate the shear modulus, we impose a shear strain of
magnitude � on the unit cell. The principal stretches can be
expressed in terms of the applied shear deformation in the
small-strain limit as

�1 = 1 +
�

2
, �2 = 1 −

�

2
. �13�

The shear modulus is given by

G� =
d2

d�2U���2� . �14�

It is well known that the elastic modulus of a random 2D
fibrous network follows a power law behavior near the rigid-
ity percolation threshold �24–28�. The rigidity percolation is
the minimum cross-linking density above which the network
shows a finite rigidity. For the present case we use the value
reported for a 2D rod network by Latva-Kokko et al. where
�L / lc�crit=5.932 �29�. The unit cell modulus should give a
reasonable estimate of the shear modulus of the actual net-
work near and away from the percolation threshold. For this
reason, we incorporate an ad hoc type of functional correc-
tion given by C�L / lc−5.932� f. The actual network modulus
is then represented as

G = G�C�L/lc − 5.932� f . �15�

By making a best fit approach with the actual network analy-
sis �13� �discussed later�, we estimate the parameters as C
=0.035 and f =1.4	0.2.

III. RESULTS AND DISCUSSIONS

A. Model parameters

In order to obtain the parameters m and n in Eq. �4�, we fit
G /Gaffine vs lb /L for the case of L / lc=29.09 in Head et al.
�13�, as shown in Fig. 6�a�. Here, Gaffine is defined as �13�

Gaffine = lim
�→


G . �16�

An approximate expression �see the Appendix� of Gaffine for
moderately large cross-link density, i.e., �=Lf / lc	L / lc, is
given by

Gaffine = 2�L�C�� − 5.932� f

Auc
��2�4 − 9�3 + 11�2 + 3�

�� − 2�3�1 + 2�� � .

�17�

It is seen that the functional correction in Eq. �15�, C�L / lc
−5.932� f does not affect the G /Gaffine value �as it is a ratio�
and the exponents m and n represent the fundamental contri-
bution of the unit cell with four springs only. This curve
fitting results in m=1 and n=3.

To obtain the parameters in Eq. �15�, we fit the data from
actual network analysis �13� with various L / lc and lb /L

=0.006 as shown in Fig. 7�a�, and the parameters are esti-
mated as C=0.035 and f =1.4	0.2.

B. Results

We further evaluate the variation of the axial energy con-
tribution. The axial energy fraction is defined as

Uaxial

U
=

Uch
a + Usp

a

Uch
a + Usp

a + Uch
b + Usp

b . �18�

An approximate expression �see the Appendix� for the axial
energy fraction for moderately large cross-link density i.e.,
�=Lf / lc	L / lc, is given by
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FIG. 6. �Color online� �a� Normalized shear modulus G /Gaffine

vs lb /L and L / lc=29.09; �b� axial energy fraction for the same case.
The actual network prediction is from the Mikado model �13�.
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Uaxial

U
= 1 −

2

2 + 3
lb
2

L2�4�� − 2�
. �19�

Figure 6�b� shows the plot of the axial energy fraction vs
lb /L for the case of L / lc=29.09. The axial energy fraction
matches that obtained by Head et al. �13�. In Fig. 6�b�, the
linear portion of the curve signifies the nonaffine deforma-
tion regime. In the linear portion, the elastic modulus G is
proportional to the bending rigidity � and the elastic energy
is mostly stored in the bending mode. An approximate equa-
tion for the linear portion of the curve in Fig. 6�b� can be
obtained from Eq. �19� as

Uaxial

U
	

3

2

lb
2

L2�4�� − 2� . �20�

Equation �20� is valid for

lb

L
�

1

�5/2 . �21�

Substituting �=29.09 we get lb /L
O�10−4�. It is also seen
that there is a cutoff lb /L, above which the network attains its
affine deformation mode, i.e., the whole network deforms in
axial mode. As lb /L increases, the bending modulus � of the
constituent fibers also increases; as a result, bending be-
comes increasingly less favorable deformation mode and the
network preferentially deforms in axial mode. The macro-
scopic shear modulus asymptotically approaches its affine
limit and the deformation energy is entirely stored as axial
energy. Even without the spring, qualitatively we obtained
similar behaviors �not shown� as those in Fig. 6. The gradual
transition from the bending-dominated deformation to axial
stretching can be attributed to the free rotations of the main
chains about the joints and their continuous preferential to-
pological adjustments to accommodate the axial deformation
mode.

In Fig. 7�b�, we plot the relative energy fractions for
changing L / lc and fixed lb /L=0.006. It is observed that the
bending energy fraction vanishes very fast with increasing
cross-linking density, and for L / lc�25 the network deforms
almost completely in the affine mode. As expected, the figure
also validates that near the rigidity percolation threshold,
�L / lc�crit=5.932, the shear modulus is contributed predomi-
nantly by the bending deformation mode, and the modulus
would have vanished if the fibers did not have any bending
rigidity, i.e., �=0 �30�. This is in agreement with what is
observed from Mikado model simulations �9,14�. Near the
rigidity percolation threshold, the axial energy fraction is less
than 4%, which justifies the assumption of neglecting the
finite-size effect of the network �14�.

In the actual network as L / lc increases, the cross-link sites
become closer to each other and the bending deformation
mode becomes increasingly energetically unfavorable; the
network thus deforms in axial mode at a high cross-link den-
sity. In the unit cell model, this phenomenon is captured in
the following way. As L / lc increases, lc becomes smaller and
as a consequence the mid-square 5-6-7-8 tends to collapse to
a point at the center of the unit cell and the main chains
preferentially deform in axial mode.

Figure 8 shows a family of plots for the nondimensional
shear modulus GL /� vs L / lc for different values of lb /L. It is
observed that as lb /L increases �the bending rigidity � of the
individual fibers increases� the shear modulus asymptotically
approaches the affine limit. The transition from the nonaffine
to the affine regime takes place at a lower value of lb /L with
increasing network density L / lc. The power law nature of the
curves in Figs. 7�a� and 8 arises due to the percolating nature
of the actual semiflexible network, which is captured in the
model by the power law correction given in Eq. �15�. At high
L / lc the asymptotic nature can be attributed to the increased
geometrical constraints arising on the bending deformation
due to progressively smaller lc and a gradual transition from
preferentially bending to preferentially axial deformation
mode.

As discussed by Head et al. �9,10,13�, there exists a
length scale � defined as
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case.
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� = lc� lc

lb
�z

, �22�

such that when G /Gaffine is plotted vs L /� all the curves
collapse onto a master curve. This master curve can further
be used to ascertain the affine and nonaffine regimes of de-
formation. In the unit cell model, we are also able to collapse
G /Gaffine curves onto a master curve, as shown in Fig. 9,
with the exponent as z=0.5882 as compared to z=0.4 found
by Head et al. �9,10,13�. The difference in the magnitude of
the exponent is due to its model-dependent nature. As seen in
Fig. 9, the ratio L /� can be used to ascertain which regime
the network is in, in the sense that �L corresponds to the
affine and ��L to the nonaffine regime.

C. The entropic effect on the modulus

Until now we have completely neglected the entropic ef-
fect on the network modulus. At finite temperature �T�0�,

there will be transverse thermal fluctuations of the semiflex-
ible fibers and estimation of the network modulus would
require the inclusion of polymer configuration �waviness� as
additional degrees of freedom �11�. Investigations on the
single-molecular level revealed that the entropic effect will
give rise to an additional longitudinal compliance �5� for the
individual constituents. Physically, this compliance comes
from the ability to pull out the thermal fluctuations of the
filament, without stretching the filament backbone �5,9,13�.
The entropic longitudinal modulus for a single semiflexible
polymer chain of length L is given by �5�

�T =
90�lp

L3 , �23�

where lp=� /KT is the persistence length. The prefactor 90
reflects the local hinge boundary conditions. This entropic
stiffness is thought to act in series with the enthalpic stiffness
�10,13�, and the resultant effective stiffness is given by

L

�
=

L

�T
+

L

�M
or � =

�T�M

�T + �M
. �24�

In Eq. �23�, the bending stiffness �
Er4, and the axial en-
thalpic stiffness �M 
Er2, where E is the Young’s modulus
and r is the radius of the individual fibers, respectively.
Equation �23� gives

�T 

�lp

L3 

Er4lp

L3 

r2lp

L3 �M . �25�

Then the ratio � is defined as

� =
1/�M

1/�T



r2lp

L3 . �26�

From Eq. �26�, if ��1 or L� �r2lp�1/3, the mechanical ex-
tensional compliance 1 /�M dominates. Therefore, over a
length segment much smaller than �r2lp�1/3, the segment be-
haves like a straight rigid rod and for all practical purposes
we can assume �	�M. On the other hand, if ��1 or L
� �r2lp�1/3, i.e., the thermal compliance 1 /�T dominates, for
length segments much greater than �r2lp�1/3 we can assume
�	�T. For intermediate values of length segments we can
use the stiffness given by Eq. �24� as mentioned by Head et
al. �13�. Incorporation of the entropic effect in the above
mentioned way gives a first approximation of the entropic
effect to the actual network elasticity; for detailed analysis
we need to incorporate the filament undulation between the
cross-link points �31�.

IV. CONCLUSION

This paper developed an efficient micromechanical model
to predict the behavior of a cytoskeleton network over the
whole parameter space. The model successfully captures the
underlying deformation physics of the cytoskeleton network
revealed from previous studies using computational models,
such as the Mikado network model. Specifically, the pro-
posed micromechanical model correctly captures the transi-
tion between the nonaffine and affine deformations, charac-
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terized as the vanishing of the bending contribution to the
overall deformation. Also, the present model is capable of
giving an effective elastic modulus for a wide range of geo-
metric and material parameter variations. In addition, a gen-
eralized length scale � associated with the proposed micro-
mechanical model has been identified, which signifies the
cutoff between the affine and nonaffine deformation patterns.
An advantage of the proposed model is that it provides an
efficient way to determine the deformation energy of the cy-
toskeleton network, which previously could only be deter-
mined through costly computations of random network mod-
els. Since a continuum constitutive model requires a
description of deformation energy under arbitrary deforma-
tion, the proposed model therefore provides an efficient way
to develop a continuum constitutive model for the cytoskel-
eton, which is currently under study by the authors. After a
continuum level constitutive model is developed, the me-
chanics of cytoskeletons with different shapes and nontrivial
geometry and boundary conditions, such as those experi-
enced by cells, can be considered by using the finite-element
method integrated with the cytoskeleton constitutive model.
The present work is based on observations from previous
studies on a Mikado-type model, which captures some of the
most essential physics of the cytoskeleton network. The
model has not considered other effects, such as boundary
effects and prestress, which are also important in cell me-
chanics. Also, the whole-cell behavior is complicated by ch-
emomechanical coupling, structural adaptation, etc. This

model is therefore a first step toward capturing the “live”
properties of the whole cell. The authors are currently work-
ing on extending the present model to capture the effect of
biochemical changes on the changing cross-linking density
through a simple kinetic law, which will connect the L / lc
variable with the chemical energy input. The chemomechani-
cal model will help in understanding some fundamental
physics in cells.
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APPENDIX

For moderately large cross-link density, i.e., �=L / lc
	Lf / lc, the axial and bending spring constants are approxi-
mated as

ka =
2

3

�

Lf

��� + 1��2� + 1� − 1

�� + 2�2 	
4

3

�

L
� ,

kb = 3
�

Lf
3

�6

� − 1
	 3

�

L3�5. �A1�

Using the above approximations, the expression for G is
given by

G 	 6�LC�� �2�2�5−10�4+14�3+16�2−64�+64�l̄b
2+3�6��6−7�5+17�4+18�3−168�2+280�−104�l̄b

4+36�10�2�4−13�3+29�2−19�−6�l̄b
6

4��−2�2+12���−2�2��4−2�3+16�−12�l̄b
2+9�5��−2�2��5−4�4+4�3+48�2−112�+32�l̄b

4+108�9��−2�4�1+2��l̄b
6 � , �A2�

where C�=0.035��−5.932�1.4 /Auc. Substituting l̄b= lb /L=�� /��1 /L� in Eq. �A2� and taking the limit �→
, we can get the
expression of Gaffine as given in Eq. �17�. By a simple order estimation, it can be shown that, in the linear portion of the curve

in Fig. 6�a�, G /Gaffine
�5l̄b
2, which on a log-log scale takes the form

log� G

Gaffine
� = 2 log�l̄b� + C . �A3�

Using the moderately large cross-link density assumption as given in Eq. �A1�, we can derive an expression for the energy
fraction of the system as

Ua

U
= 1 −

2

2 + 3l̄b
2�4�� − 2�

−
4 + 3l̄b

2��5 − 2�4 + 32�2 − 24��

2 + 3l̄b
2��5 − 2�4 + 32�2 − 24�� + 36l̄b

4�2�7 − 3�6 − 2�5�
+ T1, �A4�

where T1 is given by

T1 =
�4�5−20�4+28�3+32�2−128�+128�+3lb

2�4��6−7�5+17�4+18�3−168�2+280�−104�
�2�5−10�4+14�3+16�2−64�+64�+3lb

2�4��6−7�5+17�4+18�3−168�2+280�−104�+36lb
4�8�2�4−13�3+29�2−19�−6� . �A5�

Neglecting terms of O�1 /�� relative to the terms of order 1, we can further simplify the third term and T1 in Eq. �13�. The
simplified expressions are given as
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4 + 3l̄b
2��5 − 2�4 + 32�2 − 24��

2 + 3l̄b
2��5 − 2�4 + 32�2 − 24�� + 36l̄b

4�2�7 − 3�6 − 2�5�

	
1

1 + 24�2l̄b
2

, �A6�

T1 	
1

1 + 24�2l̄b
2

. �A7�

It is seen that the third term and T1 cancel each other out in
the moderately large � limit. Equation �A4� can be simplified
to the expression given in Eq. �19�.

�1� Cytoskeleton Mechanics, Models, and Measurements, edited
by R. K. M. Mohammad and R. D. Kamm �Cambridge Uni-
versity Press, Cambridge, U.K., 2006�.

�2� B. Alberts et al., Molecular Biology of Cells, 4th ed. �Garland
Science, New York, 1994�.

�3� P. A. Janmey et al., J. Biol. Chem. 269, 32503 �1994�.
�4� J. Kas et al., Biophys. J. 70, 609 �1996�.
�5� F. C. Mackintosh, J. Kas, and P. A. Janmey, Phys. Rev. Lett.

75, 4425 �1995�.
�6� M. Tempel, G. Isenberg, and E. Sackmann, Phys. Rev. E 54,

1802 �1996�.
�7� C. Storm et al., Nature �London� 435, 191 �2005�.
�8� M. Rubinstein and R. H. Colby, Polymer Physics �Oxford Uni-

versity Press, Oxford, 2003�.
�9� D. A. Head, A. J. Levine, and F. C. MacKintosh, Phys. Rev.

Lett. 91, 108102 �2003�.
�10� D. A. Head, A. J. Levine, and F. C. MacKintosh, Phys. Rev. E

72, 061914 �2005�.
�11� J. Wilhelm and E. Frey, Phys. Rev. Lett. 91, 108103 �2003�.
�12� L. R. G. Treloar, The Physics of Rubber Elasticity, 2nd ed.

�Clarendon Press, Oxford, 1958�.
�13� D. A. Head, A. J. Levine, and F. C. MacKintosh, Phys. Rev. E

68, 061907 �2003�.
�14� D. A. Head, F. C. MacKintosh, and A. J. Levine, Phys. Rev. E

68, 025101 �2003�.
�15� A. Vaziri and A. Gopinath, Nat. Mater. 7, 15 �2008�.

�16� M. L. Gardel et al., Science 304�5675�, 1301 �2004�.
�17� M. Das, F. C. MacKintosh, and A. J. Levine, Phys. Rev. Lett.

99, 038101 �2007�.
�18� G. A. Holzapfel, Nonlinear Solid Mechanics: A Continuum

Approach for Engineering �Wiley, Chichester, U.K., 2000�.
�19� M. C. Boyce and E. M. Arruda, Rubber Chem. Technol. 73,

504 �2000�.
�20� S. C. Liu, L. H. Derick, and J. Palek, J. Cell Biol. 104, 527

�1987�.
�21� M. Arslan and M. C. Boyce, J. Appl. Mech. 73, 536 �2006�.
�22� X. F. Wu and Y. A. Dzenis, J. Appl. Phys. 98, 093501 �2005�.
�23� E. M. Arruda and M. C. Boyce, J. Mech. Phys. Solids 41, 389

�1993�.
�24� M. Sahimi, Lect. Notes Math. 1035, 314 �1983�.
�25� S. Arbabi and M. Sahimi, Phys. Rev. B 38, 7173 �1988�.
�26� S. Arbabi and M. Sahimi, J. Phys. A 21, L863 �1988�.
�27� S. Arbabi and M. Sahimi, Phys. Rev. Lett. 65, 725 �1990�.
�28� D. Stauffer and A. Aharony, Introduction to Percolation

Theory, 2nd ed. �Taylor & Francis, London, 1992�, p. 181.
�29� M. Latva-Kokko, J. Makinen, and J. Timonen, Phys. Rev. E

63, 046113 �2001�.
�30� M. Kellomaki, J. Astrom, and J. Timonen, Phys. Rev. Lett. 77,

2730 �1996�.
�31� E. M. Huisman et al., Phys. Rev. Lett. 99, 208103 �2007�.
�32� E. Frey, ChemPhysChem 3, 270 �2002�.

MICROMECHANICAL MODEL FOR ELASTICITY OF THE … PHYSICAL REVIEW E 77, 061916 �2008�

061916-9


